Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices

نویسنده

  • Marc Roth
چکیده

We present a framework for the complexity classification of parameterized counting problems that can be formulated as the summation over the numbers of homomorphisms from small pattern graphs H1, . . . ,H` to a big host graph G with the restriction that the coefficients correspond to evaluations of the Möbius function over the lattice of a graphic matroid. This generalizes the idea of Curticapean, Dell and Marx [STOC 17] who used a result of Lovász stating that the number of subgraph embeddings from a graph H to a graph G can be expressed as such a sum over the lattice of partitions of H. In the first step we introduce what we call graphically restricted homomorphisms that, inter alia, generalize subgraph embeddings as well as locally injective homomorphisms. We provide a complete parameterized complexity dichotomy for counting such homomorphisms, that is, we identify classes of patterns for which the problem is fixed-parameter tractable (FPT), including an algorithm, and prove that all other pattern classes lead to #W[1]-hard problems. The main ingredients of the proof are the complexity classification of linear combinations of homomorphisms due to Curticapean, Dell and Marx [STOC 17] as well as a corollary of Rota’s NBC Theorem which states that the sign of the Möbius function over a geometric lattice only depends on the rank of its arguments. We apply the general theorem to the problem of counting locally injective homomorphisms from small pattern graphs to big host graphs yielding a concrete dichotomy criterion. It turns out that – in contrast to subgraph embeddings – counting locally injective homomorphisms has “real” FPT cases, that is, cases that are fixed-parameter tractable but not polynomial time solvable under standard complexity assumptions. To prove this we show in an intermediate step that the subgraph counting problem remains #P-hard when both the pattern and the host graphs are restricted to be trees. We then investigate the more general problem of counting homomorphisms that are injective in the r-neighborhood of every vertex. As those are graphically restricted as well, they can also easily be classified via the general theorem. Finally we show that the dichotomy for counting graphically restricted homomorphisms readily extends to so-called linear combinations. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Counting Problems, G.2.2 Graph Theory

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primitive Elements in the Matroid-minor Hopf Algebra

We introduce the matroid-minor coalgebra C, which has labeled matroids as distinguished basis, and coproduct given by splitting a matroid into a submatroid and complementary contraction all possible ways. We introduce two new bases for C; the first of these is is related to the distinguished basis by Möbius inversion over the rank-preserving weak order on matroids, the second by Möbius inversio...

متن کامل

A note on Möbius inversion over power set lattices

In this paper, we establish a theorem on Möbius inversion over power set lattices which strongly generalizes an early result of Whitney on graph colouring.

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

Truncation Formulas for Invariant Polynomials of Matroids and Geometric Lattices

This paper considers the truncation of matroids and geometric lattices. It is shown that the truncated matroid of a representable matroid is again representable. Truncation formulas are given for the coboundary and Möbius polynomial of a geometric lattice and the spectrum polynomial of a matroid, generalizing the truncation formula of the rank generating polynomial of a matroid by Britz. Mathem...

متن کامل

Some Applications of the Möbius Function

The Möbius function is an important concept in combinatorics. First developed for number theory, it has since been extended to arbitrary posets, where it allows inversion of certain functions. One type of poset of particular interest is the subgroup lattice of a finite group. In this paper, we examine some fundamental results about the Möbius function, including the powerful inversion formula, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017